About all

Best probiotics for crohns. Best Probiotics for Crohn’s Disease: Exploring Effective Strains for IBD Management

What are the most effective probiotics for managing Crohn’s disease. How do probiotics impact Inflammatory Bowel Disease symptoms. Which probiotic strains show promise in IBD research. Can probiotics help maintain remission in Crohn’s disease patients.

Содержание

Understanding Inflammatory Bowel Disease: Crohn’s Disease vs. Ulcerative Colitis

Inflammatory Bowel Disease (IBD) is a term that encompasses two primary conditions: Crohn’s Disease (CD) and Ulcerative Colitis (UC). While these conditions share some similarities, they have distinct characteristics that set them apart.

Common Symptoms of IBD

  • Diarrhea
  • Blood or mucus in stools
  • Inflammation and damage to the intestinal wall

Key Differences Between Crohn’s Disease and Ulcerative Colitis

The main distinguishing factor between CD and UC is the location of ulceration and tissue damage:

  • Ulcerative Colitis: Typically limited to the colon
  • Crohn’s Disease: Can occur anywhere in the gastrointestinal tract, from mouth to anus

Subtypes of Crohn’s Disease

Crohn’s Disease is further classified into five subtypes based on the specific area of the GI tract affected:

  1. Ileocolitis: Affects the ileum and colon
  2. Ileitis: Solely affects the ileum
  3. Gastroduodenal Crohn’s disease: Affects the stomach and duodenum
  4. Jejunoileitis: Affects the jejunum
  5. Crohn’s colitis: Affects only the colon

Understanding these distinctions is crucial when considering probiotic administration, as different bacteria thrive in various parts of the intestinal tract and have unique mechanisms of action.

The Role of Gut Microbiota in IBD Pathogenesis

Research has long suggested that alterations in intestinal bacterial flora may contribute to the onset and progression of IBD. This hypothesis is now supported by clinical evidence, revealing significant differences in gut flora composition between IBD patients and healthy individuals.

Gut Flora Imbalances in Crohn’s Disease

Multiple studies have identified variations in the gut microbiome of Crohn’s disease patients compared to healthy controls:

  • Higher levels of anaerobic bacteria, particularly Bacteroides species
  • Increased presence of aerobes and Enterobacteria in active CD
  • Lower numbers of Lactobacilli in CD patients

These findings support the theory that intestinal flora plays a role in IBD pathogenesis, although the specific bacterial species involved may vary across studies.

Probiotics as a Potential Therapeutic Approach for IBD

Given the observed dysbiosis in IBD patients, researchers have begun investigating the clinical outcomes of using different probiotic strains in IBD management. But can probiotics effectively support gut health in individuals with Crohn’s disease or ulcerative colitis?

Promising Probiotic Strains for Crohn’s Disease

One of the most extensively studied probiotic strains for Crohn’s disease is a non-pathogenic strain of E. coli known as E. coli Nissle 1917.

E. coli Nissle 1917: A Closer Look

A 1997 double-blind study by Malchow examined the effects of E. coli Nissle 1917 on 32 patients with active Crohn’s disease. The findings revealed:

  • Similar remission rates between the probiotic and placebo groups when combined with standard steroid treatment
  • Lower relapse rates in the E. coli treated group (33% vs. 64% in the placebo group)

These results suggest that while the probiotic may not enhance the initial achievement of remission, it could play a role in maintaining remission and reducing symptom recurrence.

The Importance of Strain-Specific Research in Probiotic Therapy

When considering probiotic supplementation for IBD management, it’s crucial to recognize that not all probiotic strains are created equal. The efficacy of a probiotic intervention often depends on the specific bacterial strain used.

Why Strain Specificity Matters

Different probiotic strains can have vastly different effects on the gut microbiome and overall health. Factors that influence a strain’s effectiveness include:

  • Ability to survive passage through the digestive system
  • Capacity to adhere to intestinal mucosa
  • Production of antimicrobial substances
  • Immunomodulatory properties

For this reason, it’s essential to look at strain-specific research when evaluating the potential benefits of probiotics for IBD.

Emerging Research on Probiotics and IBD

While early studies have shown promise, the field of probiotic therapy for IBD is still evolving. Ongoing research is exploring various probiotic strains and their potential benefits for both Crohn’s disease and ulcerative colitis.

Areas of Current Investigation

  • Multi-strain probiotic formulations
  • Synbiotic approaches combining probiotics with prebiotics
  • Novel delivery methods to enhance probiotic survival and efficacy
  • Personalized probiotic therapies based on individual microbiome profiles

As research progresses, we may gain a clearer understanding of which probiotic strains are most effective for different subtypes of IBD and at various stages of the disease.

Considerations for Probiotic Use in IBD Patients

While probiotics show potential in IBD management, it’s important to approach their use with caution and under medical supervision. Several factors should be considered when incorporating probiotics into an IBD treatment plan:

Safety Concerns

Are probiotics safe for all IBD patients? Generally, probiotics are considered safe for most individuals. However, there are some situations where caution is warranted:

  • Severely immunocompromised patients
  • Individuals with central venous catheters
  • Those with severe acute pancreatitis

In these cases, the risk of probiotic-associated infections may be higher, and the benefits should be carefully weighed against potential risks.

Timing of Probiotic Administration

When is the optimal time to introduce probiotics in IBD treatment? This question remains under investigation, but current evidence suggests several potential approaches:

  • During periods of remission to help maintain symptom-free status
  • In combination with standard treatments during active disease flares
  • As a preventive measure in high-risk individuals with a family history of IBD

The most appropriate timing may vary depending on the individual patient and the specific probiotic strain being used.

The Future of Probiotic Therapy in IBD Management

As our understanding of the gut microbiome and its role in IBD pathogenesis continues to grow, so too does the potential for probiotic-based therapies. What developments can we expect in the coming years?

Advancements in Probiotic Research

Several exciting areas of research are likely to shape the future of probiotic therapy for IBD:

  • Identification of novel probiotic strains with enhanced anti-inflammatory properties
  • Development of genetically modified probiotics designed to target specific aspects of IBD pathology
  • Integration of microbiome analysis into routine IBD care to guide personalized probiotic recommendations
  • Exploration of the potential synergistic effects between probiotics and other IBD treatments

Challenges and Opportunities

While the potential of probiotics in IBD management is promising, several challenges remain:

  • Standardization of probiotic formulations and dosages
  • Conducting large-scale, long-term clinical trials to establish efficacy and safety
  • Overcoming regulatory hurdles to bring effective probiotic therapies to market
  • Educating healthcare providers and patients about the appropriate use of probiotics in IBD

Addressing these challenges will be crucial in realizing the full potential of probiotic therapy for IBD patients.

Practical Recommendations for IBD Patients Considering Probiotic Supplementation

For individuals with IBD who are interested in exploring probiotic supplementation, what practical steps should be taken? Here are some key recommendations:

Consult with a Healthcare Provider

Before starting any probiotic regimen, it’s essential to consult with a gastroenterologist or other healthcare provider familiar with IBD management. They can offer personalized advice based on your specific condition, medical history, and current treatment plan.

Choose Quality Probiotics

When selecting a probiotic supplement, consider the following factors:

  • Strain specificity: Look for products containing strains that have been studied in IBD populations
  • CFU count: Ensure the product contains an adequate number of live bacteria
  • Quality assurance: Choose reputable brands that undergo third-party testing
  • Storage requirements: Follow proper storage instructions to maintain probiotic viability

Monitor Your Response

Keep track of any changes in symptoms or overall well-being after starting probiotic supplementation. This information can be valuable in assessing the effectiveness of the probiotics and guiding future treatment decisions.

Incorporate Probiotic-Rich Foods

In addition to supplements, consider incorporating naturally probiotic-rich foods into your diet, such as:

  • Yogurt with live cultures
  • Kefir
  • Sauerkraut
  • Kimchi
  • Kombucha

However, be mindful that some fermented foods may exacerbate symptoms in certain individuals with IBD. Introduce these foods gradually and monitor your body’s response.

Integrating Probiotics into a Comprehensive IBD Management Plan

While probiotics show promise in supporting gut health for IBD patients, it’s important to view them as part of a broader management strategy. How can probiotics be effectively integrated into a comprehensive IBD treatment plan?

Complementary Approaches

Probiotics may be most effective when used in conjunction with other evidence-based IBD management strategies, such as:

  • Conventional medical treatments (e.g., anti-inflammatory medications, immunosuppressants)
  • Dietary modifications (e.g., low-FODMAP diet, specific carbohydrate diet)
  • Stress management techniques (e.g., mindfulness meditation, cognitive-behavioral therapy)
  • Regular exercise appropriate for the individual’s condition

Personalized Treatment Plans

The optimal approach to incorporating probiotics into IBD management will vary from person to person. Factors that may influence the effectiveness of probiotic therapy include:

  • The specific subtype of IBD
  • The current stage of the disease (active flare vs. remission)
  • Individual genetic factors
  • Existing gut microbiome composition
  • Concurrent medications and treatments

Working closely with a healthcare team to develop a personalized treatment plan that incorporates probiotics alongside other interventions can help maximize the potential benefits while minimizing risks.

Conclusion: The Evolving Role of Probiotics in IBD Care

As research into the gut microbiome and its relationship to IBD continues to advance, the potential role of probiotics in managing conditions like Crohn’s disease and ulcerative colitis becomes increasingly apparent. While early studies have shown promise, particularly with strains like E. coli Nissle 1917, it’s clear that more research is needed to fully understand the most effective probiotic interventions for different IBD subtypes and patient populations.

For individuals living with IBD, probiotics represent an exciting area of potential therapeutic benefit. However, it’s crucial to approach probiotic use thoughtfully and under medical supervision. By staying informed about the latest research, working closely with healthcare providers, and carefully monitoring individual responses, IBD patients can make informed decisions about incorporating probiotics into their overall management strategy.

As we look to the future, ongoing research into novel probiotic strains, delivery methods, and personalized approaches holds the promise of more targeted and effective probiotic therapies for IBD. While challenges remain, the continued exploration of the gut microbiome and its role in IBD offers hope for improved outcomes and quality of life for those affected by these complex conditions.

Which probiotics are best for IBD?

Digestive Health



Kathy Wheddon


Nutritional Therapist DipION

Before we start to look at the evidence behind the use of probiotics in Inflammatory Bowel Disease (IBD), it is important to understand the two different types of IBD, and their clinical presentations. Both Crohn’s Disease (CD) and Ulcerative Colitis (UC) share some similarities in symptoms, such as diarrhoea, blood* or mucus in the stools and inflammation and damage to the intestinal wall. However, the defining difference between the two conditions is the location of the ulceration and/or tissue damage. Typically, ulceration in Ulcerative Colitis is limited to the colon, whereas in Crohn’s Disease the damage can occur at any point in the GI tract, from the mouth to the anus. Crohn’s Disease is therefore divided in to 5 sub-types, dependent on the exact location in the GI tract that the damage is located.

• Ileocolitis: affects the ileum and the colon

• Ileitis: solely affects the ileum

• Gastroduodenal Crohn’s disease: affects the stomach and duodenum

• Jejunoileitis: affects the jejunum

• Crohn’s colitis: affects only the colon

It is estimated that IBD affects 1 person in every 250 in the UK

The different site of damage in the various forms of IBD is important when considering probiotic administration, as different bacteria live in different areas of the intestinal tract, and have different mechanisms of action. For this reason, most clinical trials looking at the potential for probiotic supplementation in Inflammatory Bowel Disease, focus on either Ulcerative Colitis or Crohn’s Disease, rather than grouping them both together.

Additionally, there are many other conditions affecting the GI tract that have an inflammatory component to them, however they are not typically classified as IBD. Such conditions would include Coeliac Disease, and Diverticula Disease.

Intestinal flora of IBD patients

It has been hypothesised for many years that alterations to the intestinal bacterial flora may contribute to the onset and progression of IBD. This is a theory that is now supported by clinical evidence, as several different research studies have found the composition of gut flora to be very different in IBD patients to healthy control patients. Three separate trials1,2,3all found greater numbers of anaerobic bacteria in faecal samples taken from Crohn’s disease patients than in healthy controls, with particularly elevated levels of Bacteroides.

Contrary to these studies, Giaffer et al4 found no difference in total anaerobes between active CD patients, inactive CD patients and healthy controls, but they did find more aerobes and Enterobacteria in active CD, and fewer Lactobacilli in CD patients than healthy controls.

Other research groups have focused their studies into the presence of possible pathogens in IBD, such as bacteria from the Mycobacteria and Listeria genus.

To date, the results from many of these studies are difficult to interpret and often contradictory. Imbalances in gut flora are generally found, supporting the theory that intestinal flora contributes to the pathogenesis of IBD, but the bacterial species involved often differs.

Understanding however, that dysbiosis is almost always observed in IBD patients is a step forward, even if the exact mechanics are not yet fully understood. As a logical progression from this finding, researchers have started to review the clinical outcomes of using different strains of probiotic bacteria and/or yeast in IBD patients and animal models of IBD.

So we have already looked at the increased prevalence of disruption to the GI flora in Crohn’s Disease and Ulcerative Colitis patients, as compared to healthy individuals, now let’s consider whether probiotics may help to support gut health for your clients.

Probiotics and Crohn’s disease

A non-pathogenic strain of E.coli (E. Coli Nissle 1917) has been one of the most clinically trialled probiotics with regard to Crohn’s disease. In a 1997 double-blind study by MalchowE.Coli Nissle 1917 or placebo was taken daily for twelve months by 32 patients with active Crohn’s disease. Both groups also received standard steroid treatment at the same time. The results showed that whilst remission rates were similar for both groups (suggesting no additional benefit to adding the probiotic to standard steroid treatment) the subsequent relapse rates were lower in the E.coli treated group (33% relapse versus 64%). This means that once remission had been achieved less of the probiotic group re-developed symptoms. Whilst this particular strain of E. coli has shown probiotic potential, we would suggest practitioners wait for more research before seeking out any E. coli supplements, as of course other strains of this bacteria are well documented and widely known for their pathogenic effect on the human body.  E. coli does not appear on the European Food Safety Authority’s Qualified Presumption of Safety (QPS) list.

Saccharomyces boulardii strain

The well researched probiotic yeast Saccharomyces boulardii has also been extensively trialled in Crohn’s disease sufferers. In 2000, Guslandi et al6 divided 32 CD patients into two groups, and gave one group 1g of an anti-inflammatory drug used to treat IBD three times daily, and the other group 1g of the same drug twice daily in combination with S. boulardii probiotic, at a daily dose of 20 Billion CFU (split between 4 capsules). Over the course of 6 months, only one of the 16 patients taking 4 capsules of S. boulardii a day suffered a flare-up of their symptoms. Of the 16 patients from the control group, that were solely given the anti-inflammatory drug, 6 patients experienced a flare-up.

The fact that the relapse rate was significantly lower in patients treated with the drug in combination with S. boulardii, suggests a protective effect from the probiotic.

Probiotics and Ulcerative Colitis

The same strain of non-pathogenic E.coli (E.coli Nissle1917) as was trialled in Crohn’s Disease has also been extensively trialled in Ulcerative Colitis. This strain of bacteria has been compared with an anti-inflammatory drug used to treat IBD in three separate studies of UC patients. Perhaps the most conclusive of them, by Kruis et al7, showed that out of the 327 study participants, that were treated with either E.Coli Nissle1917 or 500mg of the drug three times daily, the relapse rates were similar in both groups, indicating that E.Coli Nissle1917 may be as effective as anti-inflammatory drugs in preventing relapse in UC patients.

A multi-strain probiotic formulation has also been studied for UC. The combination product that was researched, contained three strains of Bifidobacteria, four of Lactobacilli and one of Streptococcus salivarius sp.  thermophilus. In this study by Venturi et al8 twenty patients with inactive Ulcerative Colitis were given the probiotic formulation daily for a twelve month period, during which time remission was maintained in 15 out of the 20 study participants. Whilst a 75% success rate appears significant, this trial was not placebo-controlled, so it is difficult to draw any true conclusions.

Saccharomyces boulardii has also been studied in a small pilot study involving 25 Ulcerative Colitis patients that were experiencing a flare up of their condition. Ordinarily steroid treatment would be given in such a situation, however all 25 of these UC patients had had negative reactions to steroids in the past. In this study by Guslandi et al9 all 25 patients were given 250mg S. boulardii three times per day for four weeks, alongside their regular anti-inflammatory drug treatment. 17 out of the 25 patients achieved clinical remission in this time, as confirmed by endoscopic examination. Whilst this study lacked a control group, and was quite small in number, the results definitely warrant further study, and look promising at this stage.

In 2021 the probiotic strain Lactobacillus plantarum HNU082 (Lp082) was investigated and found to play a protective role in Ulcerative Colitis in mice10. At present no human trials have been undertaken using Lactobacillus plantarum HNU082 (Lp082).

Key takeaways of probiotics and IBD

I often seem to write this line, but rarely is it more true than here, that more research is needed to determine the best strains of probiotic to use in this group of patients. Some promising findings have been uncovered already, and I personally am particularly excited about the potential role of Saccharomyces boulardii in helping to support gut health in both Ulcerative Colitis and Crohn’s Disease. Saccharomyces boulardii is my absolute favourite probiotic, as it has so many varied clinical applications.

I eagerly await further research in to this field, and in the interim I think that healthcare professionals can feel excited about the potential for probiotics in IBD management.

To add more targeted support and to benefit from potent anti-inflammatory effects, Saccharomyces boulardii can be used as maintenance for IBD patients. Some clinical trials into the use of this supplement suggest that patients are less likely to suffer a flare up of their symptoms if they add Saccharomyces boulardii to their existing plan. Additionally, many IBD sufferers experience frequent bouts of diarrhoea as a symptom of their disease, and Saccharomyces boulardii has been especially clinically trialled and shown to support bowel health in those with occasional diarrhoea.

You can find Saccharomyces boulardii in Optibac Probiotics Saccharomyces Boulardii. 

For any practitioners working with Crohn’s Disease patients, you may be interested to read fellow Nutritional Therapist Kerry’s article, about the effect of pharmaceutical Crohn’s treatments on the gut flora: New study explores effects of Crohn’s treatments on gut flora.

* NB: We do not recommend probiotics be taken by patients with blood in the stool without first consulting their doctor. More information on safety here, in the Probiotics Learning Lab.

You can read more about the studies on Saccharomyces boulardii over on the Probiotics Database. 

References

  1. Roediger WEW, Duncan A, Kapaniris O, Miljard S. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology 1993;104: 802-9 [PubMed]
  2. Ruseler-van Embden JGH, Both-Patoir HC. Anaerobic Gram-negative faecal flora in patients with Crohn’s disease and healthy subjects. Ant Leeuwenhoek 1983;49: 125-32 [PubMed]
  3. Swidsinski A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease.Gastroenterology 2002;122: 44-54 [PubMed]
  4. Giaffer MH, Holdsworth CD, Duerden BI. The assessment of faecal flora in patients with inflammatory bowel diseases by a simplified bacteriological technique. J Med Microbiol 1991;35: 238-43 [PubMed]
  5. Malchow HA. Crohn’s disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn’s disease. J Clin Gastroenterol 1997;25: 653-8 [PubMed]
  6. Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 2000;45: 1462-4 [PubMed]
  7. Kruis W, Fric P, Stolte M. Maintenance of remission in ulcerative colitis is equally effective with Escherichia coli Nissle 1917. Gastroenterology 2001;120(suppl 1): A127
  8. Venturi A, Gionchetti P, Rizzelo F, et al. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther 1999;13: 1103-8 [PubMed]
  9. Guslandi, M. et al. (2003) A pilot trial of Saccharomyces boulardii in ulcerative colitis. European Journal of Gastroenterology & Hepatology. Vol. 15 pp. 697 – 698.
  10. Yuqing Wu et al. , (2022) Probiotics (Lactobacillus plantarum HNU082) Supplementation Relieves Ulcerative Colitis by Affecting Intestinal Barrier Functions, Immunity-Related Gene Expression, Gut Microbiota, and Metabolic Pathways in Mice. Microbiology Spectrum, Dec 21;10(6):e0165122. 


Article Updated: 11 May 2023
Originally Published: 14 Oct 2018

Probiotics for Crohn’s disease: what have we learned?

Gut. 2006 Jun; 55(6): 757–759.

doi: 10.1136/gut.2005.085381

Author information Copyright and License information Disclaimer

Probiotics do not seem to be a therapeutic option for patients with Crohn’s disease, either in the acute phase or for maintenance

Keywords: Crohn’s disease, randomised controlled trial, probiotics, lactobacillus

A causative role of bacteria in Crohn’s disease (CD) has been surmised for a long time. Only in recent years however has there been a large body of evidence from genetic and bacteriological studies indicating that the intestinal flora is the essential factor in driving the Crohn’s inflammatory process in genetically susceptible individuals. 1,2,3,4,5

The therapeutic arsenal for treating CD assumes the correctness of the above hypothesis. Thus immunosuppressors are used to reduce the host response and antibiotics are used to suppress the bacterial flora, with a consequent decreased activation of the gut immune system.6 Between the two strategies it should theoretically be better to remove the harmful cause instead of reducing the host defences by inducing a form of immunodeficiency that is susceptible to opportunistic infections.

If the intervention on the gut flora works, substituting antibiotics (which are heavily burdened by side effects) with probiotics is an appealing alternative. Probiotics are defined as a living microbial food ingredient with a beneficial effect on human health7; however, the concept that probiotics are a type of long life elixir useful in many pathological conditions needs to be viewed with caution.

In a world medical scenario, where new science develops new drugs and the financial cost increases, natural remedies, relatively cheap and potentially free from side effects, catch the consumer’s attention, thereby possibly biasing medical judgement.

To date, diverse probiotics, containing different strains and quantities of bacteria, are sold on the market.8 Their therapeutic effects may include a competitive action with commensal and pathogenic flora and an influence on the immune response through various mechanisms.9 Probiotics have been successfully employed in the treatment of antibiotic associated and Clostridium difficile diarrhoea,10,11 traveller’s diarrhoea,12 and rotavirus infection.13 For inflammatory bowel diseases (IBD), some researchers have reported success with different strains of probiotics in the treatment of ulcerative colitis,14,15 CD,16,17,18 and in pouchitis treatment and prevention.19,20E coli Nissle 1917, the yeast Saccharomyces boulardii, Lactobacillus rhamnosus strain GG (LGG), and VSL#3, a cocktail of eight different strains, are the various probiotics employed in these studies. Several significant flaws however limit the importance of many of the probiotic trials, such as inclusion of too few patients,16,17 too low a dose of the control drug,14 or the association of the probiotic with other medicines.15,16,17,18

Given their potentially high safety profile, the use of probiotics for maintaining CD remission induced by drugs or surgery is particularly appealing. It is suggested that luminal bacteria are the main cause of recurrent lesions after operation.3 Moreover, preventing recurrent lesions in CD after surgery has removed all of the macroscopic inflamed tracts is the best test for any type of drug.

Consequently, LGG, which has been shown to survive and colonise the human intestine by adhering to intestinal cells, has been challenged in two randomised placebo controlled trials for its efficacy in preventing recurrence after surgery21 and relapse after medically induced remission. 22

In the first study, 45 patients operated on for CD were randomly allocated to receive 12 billion LGG or identical placebo for one year.21 Clinical recurrence was ascertained in 16.6% on Lactobacillus and in 10.5% on placebo. Sixty per cent of patients in clinical remission on Lactobacillus had endoscopic recurrence in comparison with 35.3% on placebo. There were no significant differences in the severity of lesions between the two groups.

The second trial involved 75 children in medically induced remission.22 They were randomised to receive 1010 LGG bacteria or placebo for two years as an adjunct to standard maintenance treatment. The average time to relapse was 9.8 months in the LGG group and 11 months in the placebo group; 31% and 17% of children on LGG and placebo, respectively, relapsed during the study period. Neither study showed any statistically significant differences between the active and placebo groups.

In this issue of Gut, Marteau and colleagues23 have reported the results of a trial with Lactobacillus johnsonii (LA1) for prophylaxis of postoperative recurrence in CD (see page 842). Ninety eight adult patients were randomised in a double blind, placebo controlled study in which they received 4×109 LA1 or placebo for six months. At the end of this period, 64% of patients on placebo and 49% on probiotic had endoscopic recurrence. Endoscopic scores and clinical recurrences did not differ between the two groups.

Unfortunately, this study is neither decisively negative nor decisively positive. In fact, the lack of statistically significant difference between Lactobacillus and placebo might be due either to an insufficiently large sample size or to the follow up period of six months, which may have been too short to demonstrate a larger difference. However, the cumulative result of these three studies is not encouraging, and at the moment probiotics are not a therapeutic option for CD patients either in the acute phase or for maintenance.

Is it curtains, then, for probiotics in CD?

Before dropping the curtain we have to take into account some important points.

  • CD is a complex entity. Diverse locations and different disease behaviours may well condition the response to probiotics—for example, colonic location seems to respond better to antibiotics and, consequently, might be more susceptible to flora manipulation.

  • The course of CD follows different phases; probiotics might be more effective in the early ones.

  • There are many species of probiotic. One type might be more effective than another because strain specific properties might influence the efficacy in different cases and situations.

  • The quantity of bacterial content may condition the effectiveness of the probiotic.

In short, it seems advisable to wait for results from some larger controlled trials, some of which are already underway.

Setting aside the question of probiotic effectiveness however, is their use absolutely safe? In CD, antigenic stimuli contribute towards maintaining gut inflammation, and any bacteria can become a stimulus. In the two studies with LGG, recurrence rates were lower in the placebo groups than in the groups treated with probiotics.21,22

Moreover, some anecdotal reports of infections probably caused by probiotics have been published.24,25 Probiotic strains adhering to the intestinal mucosa could translocate, inducing bacteraemia and sepsis. This risk can be increased in patients with severe disease or deeply immunosuppressed.

So, in conclusion, is all news about probiotics in CD negative? A possible future scenario on probiotics use in this disease has come from data extrapolated from allergic paediatric patients. In children with atopic dermatitis, probiotics seem to stabilise intestinal barrier function and decrease gastrointestinal symptoms.26,27,28,29

In CD, enhanced mucosa permeability may play a pivotal role in causing and perpetuating intestinal inflammation.30 It is possible therefore that administration of probiotics in the very early phases of CD may limit pathological damage and aggravation of symptoms by stabilising the intestinal barrier.

We can also speculate that children with IBD familiarity, who are at risk of developing CD, could be treated by probiotics to reduce intestinal permeability and counterbalance the hypothetical “harmful” species. For this purpose, identification of subjects at risk of developing CD could be done by analysis of genetic characteristics, such as NO2 and other genes still to be identified. In this case, genetic studies in IBD could be promoted from the laboratory to practical usefulness.

Conflict of interest: None declared.

1. Sartor R B. Role of intestinal microflora in initiation and perpetuation of inflammatory bowel disease. Can J Gastroenterol 19904271–277. [Google Scholar]

2. Sartor R B. Enteric microflora in IBD: pathogens or commensals? Inflamm Bowel Dis 1997323–35. [PubMed] [Google Scholar]

3. Rutgeerts P, Geboes K, Peeters M.et al Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991338771–774. [PubMed] [Google Scholar]

4. Prantera C, Scribano M L. Crohn’s disease: the case for bacteria. Ital J Gastroenterol Hepatol 199931244–246. [PubMed] [Google Scholar]

5. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998115182–205. [PubMed] [Google Scholar]

6. Barnias G, Marini M, Moskaluk C A.et al Down‐regulation of intestinal lymphocyte activation and Th2 cytokine production by antibiotic therapy in a murine model of Crohn’s disease. J Immunol 20021695308–5314. [PubMed] [Google Scholar]

7. Gorbach S L. Probiotics and gastrointestinal health. Am J Gastroenterol 200095(suppl)S2–S4. [PubMed] [Google Scholar]

8. Faubion W A, Sandborn W J. Probiotic therapy with E. Coli for ulcerative colitis: take the good with the bad, Gastroenterology 2000118630–631. [PubMed] [Google Scholar]

9. Shanahan F. Probiotics and inflammatory bowel disease: is there a scientific rationale? Inflamm Bowel Dis 20006107–115. [PubMed] [Google Scholar]

10. Surawicz C M, Elmer G W, Speelman P.et al Prevention of antibiotic‐associated diarrhea by Saccharomyces boulardii: a prospective study. Gastroenterology 198996981–988. [PubMed] [Google Scholar]

11. Gorbach S L, Chang T W, Goldin B. Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 198721519 [PubMed] [Google Scholar]

12. Hilton E, Kolakowski P, Smith M.et al Efficacy of Lactobacillus GG as a diarrheal preventative in travelers diarrhea. J Travel Med 1996441–43. [PubMed] [Google Scholar]

13. Saavedra J M, Bauman N A, Oung I.et al Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 19943441046–1049. [PubMed] [Google Scholar]

14. Kruis W, Schutz E, Fric P.et al Double‐blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 199711853–858. [PubMed] [Google Scholar]

15. Rembacken B J, Snelling A M, Hawkey P M.et al Non‐pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 1999354635–639. [PubMed] [Google Scholar]

16. Malchow H A. Crohn’s disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn’s disease? J Clin Gastroenterol 199725653–658. [PubMed] [Google Scholar]

17. Guslandi M, Mezzi G, Sorghi M.et al Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 2000451462–1464. [PubMed] [Google Scholar]

18. Campieri M, Rizzello F, Venturi A.et al Combination of antibiotic and probiotic treatment is efficacious in prophylaxis of post‐operative recurrence of Crohn’s disease: a randomized controlled study vs mesalamine. Gastroenterology 2000118A781 [Google Scholar]

19. Gionchetti P, Rizzello F, Venturi A.et al Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double‐blind, placebo‐controlled trial. Gastroenterology 2000119305–309. [PubMed] [Google Scholar]

20. Gionchetti P, Rizzello F, Helwig U.et al Prohylaxis of pouchitis onset with probiotic therapy: a double blind, placebo controlled trial. Gastroenterology 20031241202–1209. [PubMed] [Google Scholar]

21. Prantera C, Scribano M L, Falasco G.et al Ineffectiveness of probiotics in preventing recurrenece after curative resection for Crohn’s disease: a randomised controlled trial with Lactobacillus GG. Gut 200251405–409. [PMC free article] [PubMed] [Google Scholar]

22. Bousvaros A, Guendalini S, Baldassano R N.et al A randomized, double blind trial of Lactobacillus GG versus placebo in addition to standard maintenance therapy for children with Crohn’s disease. Inflamm Bowel Dis 200511833–839. [PubMed] [Google Scholar]

23. Marteau P, Lémann M, Seksik P.et al Ineffectiveness of Lactobacillus johnsonii LA1 for prophylaxis of postoperative recurrence in Crohn’s disease: a randomised, double blind, placebo controlled GETAID trial. Gut 200655842–847. [PMC free article] [PubMed] [Google Scholar]

24. Riquelme A J, Calvo M A, Guzman A M.et al Saccharomyces cerevisiae fungemia after Saccharomyces boulardii treatment in immunocompromised patients. J Clin Gastroenterol 20033641–43. [PubMed] [Google Scholar]

25. De Groote M A, Frank D N, Dowell E.et al Lactobacillus rhamnosus GG bacteraemia associated with probiotic use in child with short gut syndrome. Pediatr Infect Dis J 200524278–280. [PubMed] [Google Scholar]

26. Rosenfeldt V, Benfeldt E, Valerius N H.et al Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J Pediatr 2004145612–616. [PubMed] [Google Scholar]

27. Weston S, Halbert A, Richmond P.et al Effects of probiotics on atopic dermatitis: a randomised controlled trial. Arch Dis Child 200590892–897. [PMC free article] [PubMed] [Google Scholar]

28. Caicedo R. Probiotic: protecting the intestinal ecosystem? J Pediatr 2005147143–146. [PubMed] [Google Scholar]

29. Murch S H. Probiotics as mainstream allergy therapy? Arch Dis Child 200590881–882. [PMC free article] [PubMed] [Google Scholar]

30. Hollander D, Vadheim C, Brettholz E.et al Increased intestinal permeability in patients with Crohn’s disease and their relatives. Ann Intern Med 1986105883–885. [PubMed] [Google Scholar]

Probiotics for the treatment of active Crohn’s disease

What is the purpose of this review?

The aim of this Cochrane Review was to investigate whether probiotics can induce remission in people with Crohn’s disease. We analyzed information from two studies to answer this question.

Key information

It is unclear whether probiotics are better than placebo. No serious adverse events occurred in any of the studies.

What was learned in this review?

Crohn’s disease is a disease that causes inflammation of the intestines and can lead to symptoms of mouth ulcers, abdominal pain, diarrhea, obstruction, fistulization (tunnels between the intestines and nearby organs), abscesses, malnutrition, low hemoglobin (blood) levels, and fatigue. There is some evidence to suggest that an imbalance of gut bacteria is the cause of the disease. Probiotics, which are live microorganisms, can affect gut bacteria and possibly reduce inflammation.

What are the main findings of this review?

We searched for randomized controlled trials (RCTs; clinical trials in which people are randomly assigned to one of two or more treatment groups) comparing probiotics to placebo. There were two RCTs, with information on 46 participants. These trials looked at adults. It is unclear whether probiotics differ from placebo in inducing remission of Crohn’s disease. It is unclear whether probiotics lead to differences in adverse events (minor and major) compared to placebo.

Terminals

This review found two studies investigating and showing no benefit of probiotics in the treatment of active Crohn’s disease. Since the studies were very small, no definitive conclusions can be drawn at this time. Probiotics were generally well tolerated; there was only one side effect that led to discontinuation of probiotic treatment, but details are not known. Based on the evidence presented in these studies, we cannot draw conclusions about the effectiveness of probiotics. Carefully designed studies with large numbers of participants are needed.

How up-to-date is this review?

This overview is current as of July 6, 2020.

If you found this evidence helpful, please consider donating to Cochrane. We are a charity that produces accessible evidence to help people make health and care decisions.

Donate

Translation notes:

Translation: Alexandrova Elvira Grigorievna. Editing: Yudina Ekaterina Viktorovna. Russian translation project coordination: Cochrane Russia – Cochrane Russia, Cochrane Geographic Group Associated to Cochrane Nordic. For questions related to this translation, please contact us at: cochranerussia@gmail. com;

Treatment of Crohn’s disease with probiotics

The causes of inflammation in the cavities of the gastrointestinal tract in Crohn’s disease are still ambiguous. However, recent studies suggest that the intestinal flora is a significant factor that stimulates inflammatory processes. This is confirmed by the fact that today antibiotics are successfully used to treat the disease, which suppress the bacterial flora of the patient. Replacing antibiotics with probiotics is an attractive alternative that is relatively safe and rivals traditional treatment in terms of effectiveness.

How to take probiotics for Crohn’s disease?

Complexes with probiotics are preparations containing live microorganisms that have a beneficial effect on the human body, normalizing the composition of the intestinal flora. They have a relatively high safety profile and, unlike antibiotics, do not have serious side effects. There are a number of things to consider before starting probiotic treatment.

  • The success of the treatment depends on the location of the inflammation. For example, Crohn’s disease of the colon responds better to antibiotics, which means that this area can be said to be more susceptible to the action of probiotics.
  • Crohn’s disease is best treated with probiotics in the early stages.
  • One type of probiotic may be more effective depending on the specific properties of a particular strain.
  • The amount of bacterial content also affects the success of the treatment.

Which probiotics to choose?

The choice of drugs for the normalization of intestinal microflora today is huge, and it is not so easy to choose the right remedy. Probiotics for Crohn’s disease should contain enough bacteria in a single dose and be resistant to the acidic environment of the stomach and intestines. Only modern probiotics meet these requirements.
fifth generation. These funds include BAK-SET forte and BAK-SET baby.