About all

Side effects of vasopressors. Vasopressors: Essential Guide to Uses, Precautions, and Side Effects

What are vasopressors. How do vasopressors work. When are vasopressors used. What are the common types of vasopressors. What precautions should be taken with vasopressors. What are the potential side effects of vasopressors. How do vasopressors affect pregnancy and breastfeeding.

Содержание

Understanding Vasopressors: A Vital Class of Medications

Vasopressors are a crucial group of medications that play a significant role in emergency medicine and critical care. These powerful drugs work by constricting blood vessels and elevating blood pressure, making them invaluable in treating severely low blood pressure, particularly in critically ill patients. Since their introduction in the 1940s, vasopressors have been instrumental in saving lives and preventing organ damage in shock situations.

But how exactly do vasopressors function? These medications target the smooth muscles in blood vessel walls, causing them to contract. This contraction increases vascular resistance, which in turn raises blood pressure. This mechanism is particularly useful when a patient’s blood pressure drops dangerously low, threatening organ perfusion and potentially leading to life-threatening complications.

The Crucial Role of Vasopressors in Medical Emergencies

In emergency situations, every second counts. Vasopressors provide medical professionals with a rapid and effective means to stabilize patients experiencing severe hypotension. By quickly raising blood pressure, these drugs can prevent organ failure and buy valuable time for other treatments to take effect.

Can vasopressors be used alone? While they are powerful on their own, vasopressors are often administered in combination with inotropes, another class of drugs that affect cardiac muscle contraction. This combination approach allows healthcare providers to address both blood pressure and heart function simultaneously, providing a more comprehensive treatment for critically ill patients.

Common Types of Vasopressors and Their Applications

Several medications fall under the vasopressor category, each with its unique properties and indications. Understanding these different options allows healthcare providers to choose the most appropriate treatment for each patient’s specific needs.

  • Norepinephrine: Often considered the first-line vasopressor for many types of shock
  • Epinephrine: Commonly used in cardiac arrest and anaphylaxis
  • Vasopressin (Vasostrict): Useful in septic shock and as an adjunct to other vasopressors
  • Dopamine: Can have variable effects depending on the dose
  • Phenylephrine: Often used in anesthesia and certain types of shock
  • Dobutamine: Primarily an inotrope but can have some vasopressor effects

How do healthcare providers choose the right vasopressor? The selection depends on various factors, including the underlying cause of hypotension, the patient’s overall condition, and any coexisting medical issues. In many cases, a combination of vasopressors may be used to achieve the desired effect while minimizing side effects.

Crucial Precautions When Using Vasopressors

While vasopressors can be life-saving, their potent effects require careful consideration and monitoring. These medications should only be administered under the close supervision of trained medical professionals, typically in intensive care units or emergency departments.

Why is professional oversight so important? Vasopressors can potentially reduce blood flow to certain parts of the body, which may lead to complications if not properly managed. Additionally, their effects on blood pressure and heart rate need to be closely monitored to ensure the patient’s safety and optimal treatment.

Pre-existing Conditions and Vasopressor Use

Before administering vasopressors, healthcare providers need to be aware of any pre-existing conditions that might affect treatment or increase the risk of complications. Patients should inform their doctors about any of the following conditions:

  • High blood pressure
  • Diabetes
  • Heart disease
  • Circulation problems
  • History of blood clots
  • Overactive thyroid (hyperthyroidism)
  • Varicose veins
  • Asthma
  • Allergies to medications

How do these conditions impact vasopressor use? Each of these conditions can potentially interact with vasopressors or increase the risk of certain side effects. For example, patients with a history of high blood pressure may require careful dosing to avoid dangerously high blood pressure levels. Similarly, those with circulation problems may be at higher risk of reduced blood flow to extremities.

Recognizing and Managing Side Effects of Vasopressors

While vasopressors are essential in many critical care situations, they can also cause significant side effects. Patients and healthcare providers need to be vigilant in monitoring for these potential complications.

What are the most serious side effects to watch for? Some of the most concerning side effects include:

  • Slow or uneven heartbeat
  • Blue lips or fingernails (indicating poor circulation)
  • Pain, burning, irritation, or discoloration of the skin
  • Sudden numbness, weakness, or a cold feeling anywhere in the body
  • Trouble breathing
  • Little or no urine output
  • Problems with speech, vision, or balance
  • Signs of dangerously high blood pressure (severe headache, ringing in the ears, blurred vision, confusion, anxiety, chest pain, or seizures)
  • Signs of anaphylaxis (severe allergic reaction)

How should these side effects be addressed? If any of these symptoms occur, it’s crucial to inform the healthcare team immediately. They may need to adjust the vasopressor dose, switch to a different medication, or provide additional treatments to manage the side effects.

Drug Interactions and Vasopressors

Vasopressors can interact with various other medications, potentially altering their effectiveness or increasing the risk of side effects. It’s essential for patients to provide a complete list of all medications they’re taking, including prescription drugs, over-the-counter medications, herbal supplements, and recreational substances.

Why is a comprehensive medication history important? Some drugs may enhance or diminish the effects of vasopressors, while others might increase the risk of certain side effects. For example, some antidepressants can interact with vasopressors to cause dangerously high blood pressure. By having a complete picture of a patient’s medication use, healthcare providers can make informed decisions about vasopressor administration and monitoring.

Vasopressors in Pregnancy and Breastfeeding: Special Considerations

The use of vasopressors during pregnancy and breastfeeding requires careful consideration. While these medications can be life-saving in critical situations, they may also pose risks to the developing fetus or nursing infant.

How do healthcare providers approach vasopressor use in pregnant patients? In emergency situations where vasopressors are needed, the potential benefits of treatment often outweigh the risks. However, the choice of vasopressor and dosing may be adjusted to minimize potential harm to the fetus. For example, phenylephrine is often preferred in obstetric patients due to its more predictable effects on uterine blood flow.

Breastfeeding Considerations

For nursing mothers who have received vasopressors, it’s important to discuss breastfeeding with their healthcare provider. Some vasopressors may pass into breast milk, potentially affecting the nursing infant.

What factors influence the decision to breastfeed after vasopressor use? The specific vasopressor used, the dose administered, and the duration of treatment all play a role in determining when it’s safe to resume breastfeeding. In many cases, a brief interruption in breastfeeding may be recommended to allow the medication to clear from the mother’s system.

Advances in Vasopressor Therapy: Current Research and Future Directions

The field of vasopressor therapy continues to evolve, with ongoing research aimed at improving treatment outcomes and minimizing side effects. Recent studies have focused on optimizing vasopressor selection, timing, and dosing strategies.

What are some promising areas of vasopressor research? Several areas of investigation show potential for advancing vasopressor therapy:

  • Development of novel vasopressor agents with more targeted effects
  • Exploration of personalized medicine approaches to vasopressor selection
  • Investigation of combination therapies to enhance efficacy and reduce side effects
  • Improvement of delivery methods, such as continuous infusion techniques
  • Study of vasopressor use in specific patient populations, such as the elderly or those with chronic diseases

How might these advancements impact patient care? As research progresses, we may see more tailored vasopressor treatments that maximize benefits while minimizing risks. This could lead to improved survival rates and better outcomes for critically ill patients.

Vasopressors in the Context of Overall Critical Care Management

While vasopressors play a crucial role in managing critically ill patients, they are just one component of a comprehensive approach to critical care. Understanding how vasopressors fit into the broader treatment strategy is essential for optimal patient outcomes.

What other treatments commonly accompany vasopressor therapy? Depending on the underlying cause of shock or hypotension, other interventions may include:

  • Fluid resuscitation to restore blood volume
  • Antibiotics for septic shock
  • Blood products for hemorrhagic shock
  • Mechanical ventilation for respiratory support
  • Renal replacement therapy for acute kidney injury
  • Targeted treatments for specific conditions (e.g., thrombolytics for pulmonary embolism)

How do healthcare providers balance these various treatments? The management of critically ill patients requires a dynamic and individualized approach. Continuous monitoring and assessment allow healthcare teams to adjust treatments in real-time, optimizing the balance between vasopressor use and other interventions to achieve the best possible outcomes.

The Role of Technology in Vasopressor Management

Advancements in medical technology have significantly improved the administration and monitoring of vasopressor therapy. Modern intensive care units are equipped with sophisticated monitoring devices that provide real-time data on a patient’s hemodynamic status.

How does technology enhance vasopressor therapy? Some key technological advancements include:

  • Continuous arterial blood pressure monitoring
  • Advanced cardiac output monitoring systems
  • Smart pump systems for precise medication delivery
  • Electronic health records for comprehensive data tracking and analysis
  • Decision support systems to assist in vasopressor selection and dosing

These technologies allow for more precise titration of vasopressor doses, earlier detection of side effects, and better overall management of critically ill patients.

Ethical Considerations in Vasopressor Use

The use of vasopressors, particularly in end-of-life situations, can raise complex ethical questions. Healthcare providers must navigate the delicate balance between prolonging life and maintaining quality of life.

What ethical dilemmas may arise with vasopressor use? Some common considerations include:

  • Determining when to initiate or withdraw vasopressor therapy
  • Balancing aggressive treatment with patient comfort and dignity
  • Addressing conflicts between medical recommendations and patient or family wishes
  • Allocating limited resources in crisis situations
  • Ensuring informed consent in emergency situations

How do healthcare teams address these ethical challenges? Many hospitals have ethics committees that can provide guidance on difficult cases. Additionally, clear communication with patients and families, when possible, is crucial in navigating these complex decisions.

The Importance of Advance Directives

Advance directives can play a significant role in guiding vasopressor use and other critical care interventions. These legal documents allow individuals to specify their preferences for medical treatment in situations where they may be unable to communicate.

Why are advance directives particularly relevant to vasopressor use? Given the often emergent nature of vasopressor administration, having clear guidelines from the patient can help healthcare providers make decisions that align with the patient’s wishes. This can be especially important in situations where the long-term prognosis is poor, and the use of vasopressors may prolong the dying process rather than lead to meaningful recovery.

Vasopressors – Precautions & Side Effects

This class of drugs can be lifesaving in emergency medical situations.

Vasopressors are a group of medicines that contract (tighten) blood vessels and raise blood pressure.

They’re used to treat severely low blood pressure, especially in people who are critically ill.

Very low blood pressure can lead to organ damage and even death.

These drugs can help doctors treat patients who are in shock or are undergoing surgery.

Vasopressors have been used since the 1940s. They’re commonly given in combination with medicines called inotropes (which affect cardiac muscle contraction).

Common Vasopressors

Medicines — including synthetic hormones — that are used as vasopressors include:

  • Norepinephrine
  • Epinephrine
  • Vasopressin (Vasostrict)
  • Dopamine
  • Phenylephrine
  • Dobutamine

Vasopressor Precautions

Vasopressors should only be given under the supervision of a medical professional. These are powerful drugs, and they can be dangerous if used incorrectly.

The medicines may reduce blood flow to some parts of the body.

Vasopressors are commonly given in an emergency situation, but if you can, tell your doctor if you have any of the following conditions before receiving a vasopressor:

  • High blood pressure
  • Diabetes
  • Heart disease
  • Circulation problems
  • A history of blood clots
  • An overactive thyroid (hyperthyroidism)
  • Varicose veins
  • Asthma
  • Allergies to medications

Side Effects of Vasopressors

Tell your doctor if you experience any of the following serious side effects after receiving a vasopressor:

  • Slow or uneven heartbeat
  • Blue lips or fingernails
  • Pain, burning, irritation, or discoloration of the skin
  • Sudden numbness, weakness, or a cold feeling anywhere in your body
  • Trouble breathing
  • Little or no urination
  • Problems with speech, vision, or balance
  • Signs of dangerously high blood pressure (including severe headache, ringing in your ears, blurred vision, confusion, anxiety, chest pain, or seizures)
  • Signs of anaphylaxis, a severe allergic reaction, such as rash, hives, chest tightness, or swelling of the mouth, face, lips, or tongue

If possible, let your doctor know about all prescription, non-prescription, illegal, recreational, herbal, nutritional, or dietary drugs you’re taking before receiving a vasopressor.

Vasopressors and Pregnancy

If possible, let your doctor (or emergency room physician) know if you’re pregnant before receiving a vasopressor.

Your doctor will have to decide whether the benefits of using these drugs outweigh the risks.

Also, talk to your healthcare provider before breastfeeding if you’ve received a vasopressor.

What Are Antacids? Uses, Warnings, Side Effects, and More

For occasional heartburn, indigestion, or acid reflux, antacids may help manage symptoms of pain and discomfort by neutralizing stomach acid.

By Frieda Wiley, PharmD, RPh

What Are Cephalosporins? Uses, Warnings, Side Effects, and More

Cephalosporins are a class of antibiotics used to treat a wide range of bacterial infections, including ear infections, pneumonia, meningitis, and gonorrhea…

By Frieda Wiley, PharmD, RPh

What Are Sulfonamides? Uses, Warnings, Side Effects, and More

Sulfonamides are a group of medicines used to treat bacterial infections, urinary tract infections (UTIs), and other conditions.

By Julie Lynn Marks

What Is a Diuretic? Uses, Warnings, Side Effects, and More

A diuretic, a type of drug also known as “water pills,” helps rid the body of extra water and lower blood pressure.

By Frieda Wiley, PharmD, RPh

What Are COX-2 Inhibitors?

COX-2 Inhibitors are a type of nonsteroidal anti-inflammatory drug (NSAIDs) that treat inflammatory pain.

By Erin Archer Kelser, RN

What Are Aromatase Inhibitors?

Aromatase inhibitors are a class of drugs that reduce the production of estrogen in the body.

By Erin Archer Kelser, RN

What Are Sedatives?

Sedatives are a category of drugs that slow brain activity. Also known as tranquilizers or depressants, sedatives have a calming effect and can also induce. ..

By Erin Archer Kelser, RN

What Are Calcium Channel Blockers?

Calcium channel blockers are commonly prescribed medications for high blood pressure. The medications reduce blood pressure by helping blood vessels to…

By Diana Rodriguez

Inotropes and Vasopressors – StatPearls

Continuing Education Activity

Vasopressors and inotropes are medications used to create vasoconstriction or increase cardiac contractility, respectively, in patients with shock. The hallmark of shock is decreased perfusion to vital organs, resulting in multiorgan dysfunction and eventually death. Vasopressors increase vasoconstriction, which leads to increased systemic vascular resistance (SVR). Increasing the SVR leads to increased mean arterial pressure (MAP) and increased perfusion to organs. Inotropes increase cardiac contractility, which improves cardiac output (CO), aiding in maintaining MAP and perfusion to the body. This activity describes the mode of action of inotropes and vasopressors, including mechanism of action, pharmacology, adverse event profiles, eligible patient populations, and monitoring, and highlights the role of the interprofessional team in the management of conditions where vasopressors and inotropes.

Objectives:

  • Explain the mechanisms of action of various inotropes and vasopressors.

  • Review the indications for initiating inotropic and/or vasopressor therapy.

  • Outline the contraindications for initiating vasopressive and inotropic therapy.

  • Explain the importance of collaboration and communication among interprofessional team members to improve outcomes and treatment efficacy for patients receiving treatment with inotropes and vasopressors.

Access free multiple choice questions on this topic.

Indications

Vasopressors and inotropes are medications used to create vasoconstriction or increase cardiac contractility, respectively, in patients with shock or any other reason for extremely low blood pressure. The hallmark of shock is decreased perfusion to vital organs, resulting in multiorgan dysfunction and eventually death.

Vasopressors increase vasoconstriction, which leads to increased systemic vascular resistance (SVR). Increasing the SVR leads to increased mean arterial pressure (MAP) and increased perfusion to organs. Inotropes increase cardiac contractility, which improves cardiac output (CO), aiding in maintaining MAP and perfusion to the body. The equation that connects the 2 is MAP= CO x SVR.

Indications for vasopressors and inotropes in patients with shock vary on the etiology and type of shock occurring in the patient. There are four main types of shock: hypovolemic, distributive, cardiogenic, and obstructive. Each type has its indications for vasopressors and inotropes. However, most of these medications are viable options in each scenario. Each of the major medications will be discussed briefly.

The major vasopressors include phenylephrine, norepinephrine, epinephrine, and vasopressin. Dopamine is a vasopressor with inotrope properties that is dose-dependent. Dobutamine and milrinone are inotropes.[1]

Distributive shock is commonly caused by sepsis, neurogenic shock, and anaphylaxis. These types of shock are caused by a leaky or dilated vascular system that leads to a low SVR state. The goal of vasopressors in this situation is to increase the SVR by direct constriction of the vessels. 

The American College of Critical Care Medicine (ACCM) guidelines recognize that a MAP of 60 to 65 mm Hg is required to perfuse organs. If, after appropriate fluid resuscitation, the MAP does not improve to about 60 mm Hg, it is recommended that vasopressors be initiated. Norepinephrine is recommended as the initial vasopressor per the Surviving Sepsis Campaign recommendations. Vasopressin or epinephrine are the two recommended vasopressors to add to norepinephrine, although the evidence for these recommendations is considered weak.[2]

Neurogenic shock secondary to spinal injury or disease of the spinal cord results in a lack of sympathetic tone of the peripheral nerves and unopposed parasympathetic activation. Uninhibited vagal tone results in vasogenic and cardiogenic instability. Initial stabilization requires a fluid challenge to restore intravascular volume. If hypotension persists, vasopressors are indicated to maintain systolic blood pressure greater than 90 mm Hg or MAP 85 to 90 mm Hg for the first 7 days. Norepinephrine is recommended as the initial pressor for alpha and beta activation. Epinephrine may be added as a secondary pressor. Phenylephrine should be used with extreme caution because of the reflex bradycardia due to unopposed vagal action on the heart, which may be associated with its use.[3]

Cardiogenic shock most commonly occurs in the setting of acute myocardial infarction. The cardiac output is diminished as well as decreased diastolic blood pressure. Decreasing both CO and DBP causes increasing hypoperfusion and organ dysfunction, which leads to worsening cardiac damage. Initial management is a fluid challenge of 250 to 500 mL. Persistent hypotension requires adding inotropes or vasopressors. The AHA 2017 recommendations for cardiogenic shock state states little clinical outcome data exist despite the prevalence of use for these agents. No MAP or blood pressure minimum has been extensively studied, but a reasonable goal is a MAP of 65 mm Hg.[4] Some studies have shown that norepinephrine results in fewer dysrhythmia events compared to dopamine which has classically been the primary choice. The AHA suggests choosing vasopressors or inotropes as needed based on clinical scenarios and etiology.

Mechanism of Action

Vasopressors act to increase CO and SVR through increasing contractility and HR as well inducing vasoconstriction peripherally.[5] The main groupings of these drugs are as follows:

Catecholamines

The most common catecholamine-active medications are phenylephrine, norepinephrine, and epinephrine. Other agents in this class include isoproterenol, dobutamine, and dopamine. Each of these three medications has varying activity on the alpha and beta receptors. Alpha receptors are peripheral vasoconstrictors to increase SVR. Beta-1 receptors have mostly positive chronotropic (heart rate) and inotropic (contractility) effects on the heart. Beta-2 receptors act as vasodilators in many organ systems.[6][7]

Phenylephrine is a pure alpha-1 agonist, inducing peripheral arterial vasoconstriction. Reflex bradycardia may occur due to selective vasoconstriction and elevation of blood pressure. Blood pressure, MAP, and SVR are increased. [5]Norepinephrine has mixed alpha-1 and beta activity (beta-1 greater than beta-2), with slightly more alpha-1 activity than beta activity. This leads to a more significant increase in blood pressure than increased HR. Blood pressure, MAP, SVR, and CO are increased with norepinephrine.[6]

Epinephrine has essentially comparable activity on alpha-1 and beta receptors. Epinephrine increases systemic vascular resistance, heart rate, cardiac output, and blood pressure.[6][1]

Isoproterenol is an isopropylamine analog of epinephrine used in bradyarrhythmias (such as torsades des pointes) and Brugada syndrome. [7]

Dopamine is a precursor of norepinephrine and epinephrine, which acts in a dose-dependent fashion on dopaminergic receptors as well as alpha and beta receptors. At low doses, dopaminergic receptors activate renal artery vasodilation. At doses 5 to 15 micrograms/kg/min, alpha and beta-adrenergic activation increase renal blood flow, HR, contractility, and CO. At higher doses greater than 15 micrograms/kg per minute, the main effects are on alpha stimulation.[6]

Dobutamine increases CO mostly through its effects on beta and alpha stimulation. Dobutamine has an affinity for beta-1 greater than beta-2 greater than alpha. Dobutamine increases contractility and CO with minimal effects on BP.[6][1] Dobutamine is also used in cardiac stress testing.[8]

Vasopressin

Vasopressin acts on V-1 receptors to stimulate smooth muscle contraction of the vessels as well as V-2 receptors in the kidneys as an anti-diuretic. There are no inotropic or chronotropic effects. Only BP and SVR are increased with vasopressin. [6]

Phosphodiesterase Inhibitors

Milrinone is a phosphodiesterase inhibitor that causes increased levels of cyclic AMP. In cardiac myocytes, this results in cardiac stimulation and increased CO. cAMP has vasodilatory effects in the smooth peripheral vessels leading to vasodilation and decreased BP. Milrinone is used to treat low CO as in decompensated HF.[9][6]

Administration

Vasopressors and inotropes are administered intravenously (IV). The method of choice for most of these medications is a continuous infusion that allows for immediate titration for desired effects. Although peripheral IVs are suitable for short-term use, adverse effects can and do occur. Although the absolute necessity for immediate central access has been recently brought into question, it is recognized that central access is the method of choice for administering vasoactive medications.[10]

Adverse Effects

Adverse effects of vasopressors and inotropes depend on the mechanism of action. For the medications that have beta stimulation, arrhythmias are one of the most common adverse effects. Some of the specific adverse effects will be described here.

Dopamine has various mechanisms and adverse effects that include hypotension, tachycardia, local tissue necrosis, and gangrene if extravasation occurs. Epinephrine can have tachycardia, anxiety, pulmonary edema, and local tissue necrosis with extravasation. Norepinephrine has similar adverse effects to epinephrine but may also include bradycardia and dysrhythmia. Phenylephrine may cause reflex bradycardia, decreased CO, local tissue necrosis with extravasation, peripheral, renal, mesenteric, or myocardial ischemia. Vasopressin may induce arrhythmias, mesenteric ischemia, chest pain, coronary artery constriction and MI, bronchial constriction, hyponatremia, and local tissue necrosis with extravasation.[7]

Adverse effects of inotropes include hypertension, hypotension, dysrhythmias, angina, and acute MI. Dobutamine, specifically, may cause hypokalemia and local tissue necrosis with extravasation. [11] Dobutamine has also been associated with increased mortality with prolonged use, likely due to its effect of increased myocardial oxygen consumption, which may limit its clinical effectiveness. Milrinone may cause elevated LFTs, thrombocytopenia, and increased mortality with long-term use.

Contraindications

Few absolute contraindications exist for vasopressors and inotropes outside of anaphylactic hypersensitivity reactions. Adrenergic agents are contraindicated with halogenated hydrocarbons like halothane during general anesthesia[6]. In certain situations, there are relative contraindications to dopamine, dobutamine, and milrinone. It is recommended dopamine not be used as the first-line vasopressor in septic shock compared to norepinephrine due to increased mortality and increased dysrhythmias.[12] Adrenergic vasopressors should be avoided in patients with pheochromocytoma or uncorrected tachyarrhythmia. Dobutamine is contraindicated in idiopathic hypertrophic subaortic stenosis. Some organizations also have dobutamine as a relative contraindication in patients with recent MI or a history of uncontrolled BP, aortic dissection, or a large aortic aneurysm. Patients taking an MAOI should have decreased doses and be monitored closely.

Monitoring

All patients requiring vasopressors or inotropes require close monitoring of vital signs, fluid status, and laboratory markers. Arterial blood pressure monitoring via catheter allows for immediate recognition of changes and allows for precise titration. Pulmonary artery catheters may be considered to assess cardiac function. Continuous cardiac monitoring for dysrhythmias is essential. For patients who can speak, frequent checks for pain at the vascular access site, chest pain, peripheral numbness, abdominal pain, and neuro checks should be performed. Evaluation of peripheral ischemia should be frequent. Laboratory markers for worsening perfusion status and multiorgan injury should be closely monitored. Vasopressin’s effect on renal function requires close monitoring of serum and urine sodium, osmolality, and fluid status. Milrinone requires monitoring of LFTs and platelet count.[6]

Toxicity

Patients currently taking a MAOI will have decreased metabolism of adrenergic vasopressors and will require lower doses to avoid toxicity.[6]

Most of the medications mentioned above are naturally occurring compounds. There are no common toxicological issues directly related to the medications, metabolites, or preparations of the medications described above.[13][14]

Enhancing Healthcare Team Outcomes

Inotropes and vasopressors are commonly used in the ICU. Since the conditions they address and the effects they render can be critical, an entire interprofessional team should be involved in their ordering, dosing, and administration, as well as subsequent monitoring. While these medications are ordered by clinicians, the monitoring of the patient is done by nurses trained in critical care. Pharmacists should verify dosing and check for interactions and contraindications to their use. Besides vital signs, patient body weight, fluid status, renal function, and peripheral perfusion require continuous monitoring. A constant assessment of the patient is needed to ensure that the inotropes and vasopressors are tapered if not needed.[15][16] These examples of interprofessional coordination can improve outcomes when patients receive vasopressive and inotropic medications with fewer adverse events. [Level 5]

Review Questions

  • Access free multiple choice questions on this topic.

  • Comment on this article.

References

1.

Einav S, Helviz Y, Ippolito M, Cortegiani A. Vasopressor and inotrope treatment for septic shock: An umbrella review of reviews. J Crit Care. 2021 Oct;65:65-71. [PubMed: 34090150]

2.

Hollenberg SM, Ahrens TS, Annane D, Astiz ME, Chalfin DB, Dasta JF, Heard SO, Martin C, Napolitano LM, Susla GM, Totaro R, Vincent JL, Zanotti-Cavazzoni S. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med. 2004 Sep;32(9):1928-48. [PubMed: 15343024]

3.

Dave S, Cho JJ. StatPearls [Internet]. StatPearls Publishing; Treasure Island (FL): Feb 10, 2022. Neurogenic Shock. [PubMed: 29083597]

4.

van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, Kilic A, Menon V, Ohman EM, Sweitzer NK, Thiele H, Washam JB, Cohen MG., American Heart Association Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; and Mission: Lifeline. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation. 2017 Oct 17;136(16):e232-e268. [PubMed: 28923988]

5.

Russell JA. Vasopressor therapy in critically ill patients with shock. Intensive Care Med. 2019 Nov;45(11):1503-1517. [PubMed: 31646370]

6.

Cooper BE. Review and update on inotropes and vasopressors. AACN Adv Crit Care. 2008 Jan-Mar;19(1):5-13; quiz 14-5. [PubMed: 18418098]

7.

Overgaard CB, Dzavík V. Inotropes and vasopressors: review of physiology and clinical use in cardiovascular disease. Circulation. 2008 Sep 02;118(10):1047-56. [PubMed: 18765387]

8.

Sengupta SP, Mungulmare K, Okwose NC, MacGowan GA, Jakovljevic DG. Comparison of cardiac output estimates by echocardiography and bioreactance at rest and peak dobutamine stress test in heart failure patients with preserved ejection fraction. Echocardiography. 2020 Oct;37(10):1603-1609. [PubMed: 32949037]

9.

Silverman DN, Houston BA, Tedford RJ. Old Drug, New Trick? Oral Milrinone for Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2020 Jul 07;9(13):e017170. [PMC free article: PMC7670500] [PubMed: 32552221]

10.

Cardenas-Garcia J, Schaub KF, Belchikov YG, Narasimhan M, Koenig SJ, Mayo PH. Safety of peripheral intravenous administration of vasoactive medication. J Hosp Med. 2015 Sep;10(9):581-5. [PubMed: 26014852]

11.

Coma-Canella I. Changes in plasma potassium during the dobutamine stress test. Int J Cardiol. 1991 Oct;33(1):55-9. [PubMed: 1937984]

12.

De Backer D, Arias Ortiz J, Levy B. The medical treatment of cardiogenic shock: cardiovascular drugs. Curr Opin Crit Care. 2021 Aug 01;27(4):426-432. [PubMed: 33797431]

13.

Sionis A, Rivas-Lasarte M, Mebazaa A, Tarvasmäki T, Sans-Roselló J, Tolppanen H, Varpula M, Jurkko R, Banaszewski M, Silva-Cardoso J, Carubelli V, Lindholm MG, Parissis J, Spinar J, Lassus J, Harjola VP, Masip J. Current Use and Impact on 30-Day Mortality of Pulmonary Artery Catheter in Cardiogenic Shock Patients: Results From the CardShock Study. J Intensive Care Med. 2020 Dec;35(12):1426-1433. [PubMed: 30732522]

14.

Kislitsina ON, Rich JD, Wilcox JE, Pham DT, Churyla A, Vorovich EB, Ghafourian K, Yancy CW. Shock – Classification and Pathophysiological Principles of Therapeutics. Curr Cardiol Rev. 2019;15(2):102-113. [PMC free article: PMC6520577] [PubMed: 30543176]

15.

Kaufmann T, Clement RP, Scheeren TWL, Saugel B, Keus F, van der Horst ICC. Perioperative goal-directed therapy: A systematic review without meta-analysis. Acta Anaesthesiol Scand. 2018 Nov;62(10):1340-1355. [PubMed: 29978454]

16.

Annane D, Ouanes-Besbes L, de Backer D, DU B, Gordon AC, Hernández G, Olsen KM, Osborn TM, Peake S, Russell JA, Cavazzoni SZ. A global perspective on vasoactive agents in shock. Intensive Care Med. 2018 Jun;44(6):833-846. [PubMed: 29868972]

Disclosure: Danny VanValkinburgh declares no relevant financial relationships with ineligible companies.

Disclosure: Connor Kerndt declares no relevant financial relationships with ineligible companies.

Disclosure: Muhammad Hashmi declares no relevant financial relationships with ineligible companies.

Norepinephrine instructions for use: indications, contraindications, side effects – description Noradrenaline conc.

d/prep. solution for d / in / in the introduction of 2 mg / ml: 2 ml, 4 ml or 8 ml amp. 5, 10 or 20 pcs. (44024)

📜 Instructions for use Noradrenaline

💊 Composition of the drug Norepinephrine

✅ Use of the drug Norepinephrine

📅 Storage conditions Norepinephrine

⏳ Expiration date Norepinephrine

Save 9000 6

Search for analogues

Interaction

Product description

Norepinephrine
(Noradrenaline)

There may be discrepancies with the current instructions for the drug, the description is made in
2015 and abridged.

Update date: 2019. 03.12

Marketing authorization holder:

ESKO PHARMA, OOO
(Russia)

Produced:

ECOPHARMPLUS JSC

(Russia)

ATX code:

C01CA03

(Norepinephrine)

Active substance:
norepinephrine
(norepinephrine)

Rec.INN

registered by WHO

Dosage forms

Norepinephrine

Conc. d/prep. solution for d / in / in the introduction of 1 mg / ml: 2 ml, 4 ml or 8 ml amp. 5, 10 or 20 pcs.

reg. No.: LP-002774
from 12/19/14
– Active

Conc. d/prep. solution for d / in / in the introduction of 2 mg / ml: 2 ml, 4 ml or 8 ml amp. 5, 10 or 20 pcs.

reg. No.: LP-002774
from 19.12.14
– Active

Release form, packaging and composition
drug Norepinephrine

Concentrate for intravenous solution as a clear, colorless or brownish yellow liquid.

Excipients : sodium chloride – 8.4 mg, hydrochloric acid or sodium hydroxide – up to pH 3.0-4.5, water for injection – up to 1 ml.

Each ml of Noradrenaline concentrate for solution for intravenous administration 1 mg/ml contains 1 mg of norepinephrine hydrotartrate, which is equivalent to 0.5 mg of norepinephrine base.

2 ml – clear glass ampoules (5) – blister packs (1) – cardboard packs.
2 ml – clear glass ampoules (5) – blister packs (2) – cardboard packs.
4 ml – clear glass ampoules (5) – blister packs (1) – cardboard packs.
4 ml – clear glass ampoules (5) – blister packs (2) – cardboard packs.
8 ml – clear glass ampoules (5) – blister packs (1) – cardboard packs.
8 ml – clear glass ampoules (5) – blister packs (2) – cardboard packs.

Concentrate for intravenous solution as a clear, colorless or brownish yellow liquid.

Excipients : sodium chloride – 8.4 mg, hydrochloric acid or sodium hydroxide – up to pH 3. 0-4.5, water for injection – up to 1 ml.

Each ml of Noradrenaline concentrate for solution for intravenous administration 2 mg/ml contains 2 mg of norepinephrine hydrogen tartrate, which is equivalent to 1 mg of norepinephrine base.

2 ml – clear glass ampoules (5) – blister packs (1) – cardboard packs.
2 ml – clear glass ampoules (5) – blister packs (2) – cardboard packs.
4 ml – clear glass ampoules (5) – blister packs (1) – cardboard packs.
4 ml – clear glass ampoules (5) – blister packs (2) – cardboard packs.
8 ml – clear glass ampoules (5) – blister packs (1) – cardboard packs.
8 ml – clear glass ampoules (5) – blister packs (2) – cardboard packs.

Clinical and pharmacological group:

Alpha, beta adrenomimetic

Pharmacotherapeutic group:

Alpha agonist

Save

If you want to place a link to the description of this drug – use this code

Norepinephrine . Description of the drug in the reference book Vidal.

Modern vasopressor therapy for septic shock (review) | Kochkin

1. Burgdorff A.-M., Bucher M., Schumann J. Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms. J Int Med Res. 2018; 46(4): 1303–1310. PMID: 292. Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R., Kumar A., ​​Sevransky J.E., Sprung C.L., Nunnally M.E., Rochwer g B, Rubenfeld G.D., Angus D.C., Annane D., Beale R.J., Bellinghan G.J., Bernard G.R., Chiche J.D., Coopersmith C., De Backer D.P., French C.J., Fujishima S., Gerlach H., Hidalgo J.L., Hollenberg S.M., Jones A.E, Karnad D.R., Kleinpell R.M., Koh Y., Lisboa T.C., Machado F.R., Marini J.J., Marshall J.C., Mazuski J.E., McIntyre L.A., McLean A.S., Mehta S., Moreno R.P., Myburgh J., Navalesi P., Nishida O., Osborn T.M., Perner A., ​​Plunkett C.M., Ranieri M., Schorr C. A., Seckel M.A., Seymour C.W., Shieh L., Shukri K.A., Simpson S.Q., Singer M., Thompson B.T., Townsend S.R., Van der Poll T., Vincent J.L. , Wiersinga W.J., Zimmerman J.L., Dellinger R.P. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock. 2016. Intensive Care Med. 2017; 43:304–377. PMID: 28101605, DOI: 10.1007/s00134-017-4683-6.

3. Malbrain M.L., Marik P.E., Witters I., Cordemans C., Kirkpatrick A.W., Roberts D.J., Van Regenmortel N. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014; 46(5): 361–380. PMID: 25432556, DOI: 10.5603/AIT.2014.0060

4. Colling K.P., Banton K.L., Beilman G.J. Vasopressors in Sepsis. Surg Infect (Larchmt). 2018; 19(2):202–207. PMID: 29336676, DOI: 10.1089/sur.2017.255

5. Sepsis: classification, clinical diagnostic concept and treatment. Under the editorship of Academician of the Russian Academy of Sciences B. R. Gelfand – 4th edition, supplemented and revised – Moscow: Medical Information Agency LLC. 2017 ISBN 978-5-8948-1988-4

6. Lambden S., Creagh-Brown B.C., Hunt J., Summers C., Forni L.G. Definitions and pathophysiology of vasoplegic shock. critical care. 2018; 22:174–181. DOI: 10.1186/s13054-018-2102-1

7. Ilyina Ya. Yu., Fot E. V., Izotova N. N., Smetkin A. A., Volkov D. A., Yakovenko E. A. , Chernova T. V., Kuzkov V. V., Kirov M. Yu. Relationship of endothelial glycocalyx with hemodynamics and metabolism in patients with septic shock and during cardiac surgery with cardiopulmonary bypass. Bulletin of anesthesiology and resuscitation. 2018; 15(6): 10–19. DOI: 10.21292/2078-5658-2018-15-6-10-19

8. Seddon M.D., Chowienczyk P.J., Brett S.E., Casadei B., Shah A.M. Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. circulation. 2008; 117(15): 1991–1996. PMID: 18391107, DOI: 10.1161/CIRCULATIONAHA.107.744540

9. Lange M., Enkhbaatar P. , Nakano Y., Traber D.L. Role of nitric oxide in shock: the large animal perspective. Front Bioscie. 2009; 14: 1979–1989. PMID: 19273179, DOI: 10.2741/3357

10. Palmer R.M., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987; 327 (6122): 524–526. PMID: 3495737, DOI: 10.1038/327524a0

11. Landry D.W., Oliver J.A. The pathogenesis of vasodilatory shock. N Engl J Med. 2001; 345:588–595. DOI: 10.1056/NEJMra002709

12. Riedo F.X., Munford R.S., Campbell W.B., Reisch J.S., Chien K.R., Gerard R.D. Deacylated lipopolysaccharide inhibits plasminogen activator inhibitor-1, prostacyclin, and prostaglandin E2 induction by lipopolysaccharide but not by tumor necrosis factor-alpha. J Immunol. 1990; 144(9): 3506–3512. PMID: 2109778

13. Parkington H.C., Coleman H.A., Tare M. Prostacyclin and endothelium dependent hyperpolarization. Pharmacol Res. 2004; 49(6): 509–514. PMID: 15026028, DOI: 10. 1016/j.phrs.2003.11.012.

14. Narumiya S., Sugimoto Y., Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999; 79(4): 1193–1226. 15. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988; 332 (6163): 411–415. PMID: 2451132, DOI: 10.1038/332411a0

16. Luscher T.F., Barton M. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. circulation. 2000; 102(19): 2434–2440. PMID: 11067800, DOI: 10.1161/01.cir.102.19.2434

17. Ilyina Ya.Yu., Fot E.V., Kuzkov V.V., Kirov M.Yu. Sepsis-induced damage to the endothelial glycocalyx (literature review). Bulletin of Intensive Care named after A.I. Saltanov. 2019; 2: 32–39 DOI: 10.21320/1818-474X-2019-2-32-39

18. Yeager M.E., Belchenko D.D., Nguyen C.M., Colvin K.L., Ivy D.D., Stenmark K. R. Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2012; 46(1): 14–22. PMID: 21778413, DOI: 10.1165/rcmb.2010-0506OC.

19. Kimmoun A., Novy E., Auchet T., Ducrocq N., Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Critcare. 2015; 19: 175–187. PMID: 25887061, DOI: 10.1186/s13054-015-0896-7

20. Russell J.A. Bench-to-bedside review: vasopressin in the management of septic shock. Critcare. 2011; 15(4): 226–244. PMID: 21892977, DOI: 10.1186/cc8224

21. Velissaris D., Karamouzos V., Ktenopoulos N., Pierrakos C., Karanikolas M. The use of sodium bicarbonate in the treatment of acidosis in sepsis: a literature update on a long term debate. Crit Care Res Pract. 2015; 2015: 605–830. PMID: 26294968, DOI: 10.1155/2015/605830

22. Förstermann U., Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. circulation. 2006; 113(13): 1708–1714. 23. Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravas J. Hydrocortisone, vitamin C and thiamine for the treatment of severe Sepsis and septic shock: a retrospective before-after study. Chest. 2017; 151(6): 1229–1238. PMID: 27940189, DOI: 10.1016/j.chest.2016.11.036.

24. Liaudet L., Rosenblatt-Velin N., Pacher P. Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Curr Vasc Pharmacol. 2013; 11(2): 196–207. PMID: 23506498, DOI: 10.2174/1570161111311020009.

25. Szabo C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007; 6(11): 917–935. PMID: 17948022, DOI: 10.1038/nrd2425

Jr., Doeller J.E., Kraus D.W. Hydrogen sulfide mediates vasoactivity in an O 2 -dependent manner. Am J Physiol Heart Circ Physiol. 2007; 292(4): h2953–60. PMID: 17237242, DOI: 10.1152/ajpheart.01193.2006

27. Ali M.Y., Ping C.Y., Mok Y.Y., Ling L., Whiteman M., Bhatia M., Moore P.K. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol. 2006; 149(6): 625–634. PMID: 17016507, DOI: 10.1038/sj.bjp.0706906

28. Keung E.C., Li Q. Lactate activates ATP-sensitive potassium channels in Guinea pig ventricular myocytes. J Clin Invest. 1991; 88(5): 1772–1777. PMID: 1939661, DOI: 10.1172/JCI115497

29. Levy B., Fritz C., Tahon E., Jacquot A., Auchet T., Kimmoun A. Vasoplegia treatments: the past, the present, and the future. Critcare. 2018; 22(1): 52–62. PMID: 29486781, DOI: 10.1186/s13054-018-1967-3.

30. Kimmoun A, Ducrocq N, Levy B. Mechanisms of vascular hyporesponsiveness in septic shock. Curr Vasc Pharmacol. 2013; 11:139–149. PMID: 23506493, DOI: 10.2174/1570161111311020004

31. Ghosh S., Liu M.S. Changes in alpha-adrenergic receptors in dog livers during endotoxic shock. J Surg Res. 1983; 34(3): 239–245. PMID: 6300552, DOI: 10.1016/0022-4804(83)

-5.

32. Barrett L.K, Singer M., Clapp L.H. Vasopressin: mechanisms of action on the vasculature in health and in septic shock. Crit Care Med. 2007; 35:33–40. PMID: 17133186, DOI: 10.1097/01.CCM.0000251127.45385.CD

33. Morales D., Madigan J., Cullinane S., Chen J., Heath M., Oz M., Oliver J.A., Landry D.W. Reversal by vasopressin of intractable hypotension in the late phase of hemorrhagic shock. circulation. 1999; 100:226–229. PMID: 10411844, DOI: 10.1161/01.cir.100.3.226

34. Spink J., Cohen J., Evans T.J. The cytokine responsive vascular smooth muscle cell enhancer of inducible nitric oxide synthase. Activation by nuclear factor-kappa B. J Biol Chem. 1995; 270 (49): 29541–7. PMID: 7493996, DOI: 10.1074/jbc.270.49.29541

vascular adrenergic alterations in a rat model of endotoxin shock: reversal by an antitumor necrosis factor-alpha monoclonal antibody. Crit Care Med. 1997; 25:504–511. PMID: 9118669, DOI: 10.1097/00003246-199703000-00021

36. Yu.Yu. Sapicheva, V.V. Likhvantsev, E.L. Petrovskaya, and A.F. Tactics of managing patients with sepsis and septic shock in a multidisciplinary hospital. Moscow: Moscow; 2015. 35 p. ISBN 978-5-98511-299-3

37. Rachoin J.-S. and Dellinger R. Timing of norepinephrine in septic patients: NOT too little too late. Critcare. 2014; 18(6): 691–692. PMID: 25672524, DOI: 10.1186/s13054-014-0691-x.

38. Arslantas M.K., Gul F., Kararmaz A., Sungur F., Ayanoglu H.O., Cinel I. Early administration of low dose norepinephrine for the prevention of organ dysfunctions in patients with sepsis. Intensive Care Med Exp. 2015; 3(1): A417–418. PMCID: PMC4798466, DOI: 10.1186/2197-425X-3-S1-A417-418

39. Dubin A., Lattanzio B., Gatti L. The spectrum of cardiovascular effects of dobutamine — from healthy subjects to septic shock patients. Rev Bras Ter Intensiva. 2017; 29(4): 490–498. PMID: 29340539, DOI: 10.5935/0103-507X.20170068

40. Avni T., Lador A., ​​Lev S., Leibovici L., Paul M., Grossman A. Vasopressors for the treatment of septic shock: systematic review and metaanalysis. PLOS One. 2015; 10(8): e0129305. PMID: 26237037, DOI: 10. 1371/journal.pone.0129305

41. Myburgh J.A., Higgins A., Jovanovska A., Lipman J., Ramakrishnan N., Santamaria J. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008; 34(12): 2226–2234. PMID: 18654759, DOI 10.1007/s00134-008-1219-0.

42. Zhou F., Mao Z., Zeng X., Kang H., Liu H., Pan L., Hou P.C. Vasopressors in septic shock: a systematic review and network meta-analysis. Ther Clean Risk Management. 2015; 11:1047–1059. PMID: 26203253, DOI: 10.2147/TCRM.S80060

43. Nagendran M., Maruthappu M., Gordon A.C., Gurusamy K.S. Comparative safety and efficacy of vasopressors for mortality in septic shock: A network meta-analysis. J Intensive Care Soc. 2016; 17(2): 136–145. PMID: 28979478, DOI: 10.1177/1751143715620203

44. De Backer D., Biston P., Devriendt J., Madl C., Chochrad D., Aldecoa C., Brasseur A., ​​Defrance P., Gottignies P., Vincent J.L. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010; 362 (9): 779–789. PMID: 20200382, DOI: 10.1056/NEJ-Moa0907118

45. Galley H.F. Renal-dose dopamine: will the message now get through? Lancet. 2000; 356 (9248): 2112–2113. PMID: 11191531, DOI: 10.1016/S0140-6736(00)03484-X

46. De Backer D., Aldecoa C., Njimi H., Vincent J.L. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med. 2012; 40(3): 725–730. PMID: 22036860, DOI: 10.1097/CCM.0b013e31823778ee

47. Stratton L., Berlin D.A., Arbo J.A. Vasopressors and Inotropes in Sepsis. Emerg Med Clin North Am. 2017; 35(1): 75–91. PMID: 27908339, DOI: 10.1016/j.emc.2016.09.005.

48. Jain G., Singh D.K. Comparison of phenylephrine and norepinephrine in the management of dopamine-resistant septic shock. Indian J Crit Care Med. 2010; 14(1):29–34. PMID: 20606906, DOI: 10.4103/0972-5229.63033.

49. Dmitrieva N.V., Petukhova I.N., Gromova E.G. Sepsis: selected issues of diagnosis and treatment. Moscow: ABVpress Publishing House. 2018: 416 p. ISBN 978-5-

8-55-0

50. Beurton A., Ducrocq N., Auchet. T, Joineau-Groubatch F., Falanga A., Kimmoun A., Girerd N., Fay R., Vanhuyse F., Tran N., Levy B. Beneficial effects of norepinephrine alone on cardiovascular function and tissue oxygenation in a pig model of cardiogenic shock. shock. 2016; 46(2): 214–218. PMID: 26849625, DOI: 10.1097/SHK.0000000000000579

51. Khanna A., English S.W., Wang X.S., Ham K., Tumlin J., Szerlip H., Busse L.W., Altaweel L., Albertson T.E., Mackey C., McCurdy M.T., Boldt D.W., Chock S., Young P.J., Krell K., Wunderink R.G., Ostermann M., Murugan R., Gong M.N., Panwar R., Hästbacka J., Favory R., Venkatesh B., Thompson B.T., Bellomo R., Jensen J., Kroll S., Chawla L.S., Tidmarsh G.F., Deane A.M. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017; 377(5):419-430. PMID: 28528561, DOI: 10.1056/NEJMoa1704154

52. Bassi E., Park M., Azevedo L.C. Therapeutic strategies for high-dose vasopressor-dependent shock. Crit Care Res Pract. 2013; 2013: 654–708. PMID: 24151551, DOI: 10.1155/2013/654708

53. Jentzer J.C., Coons J.C., Link C.B., Schmidhofer M. Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit. J Cardiovasc Pharmacol Ther. 2015; 20(3): 249–260. PMID: 25432872, DOI: 10.1177/1074248414559838

54. Auchet T., Regnier M.-A., Girerd N., Levy B. Outcome of patients with septic shock and high-dose vasopressor therapy. Ann Intensive Care. 2017; 7:43–51. PMID: 28425079, DOI: 10.1186/s13613-017-0261-x

55. Shin J.Y., Roh S.G., Lee K.M., Yang K.M. Ischemic Necrosis of Upper Lip, and All Fingers and Toes After Norepinephrine Use. J Craniofac Surg. 2016; 27(2): 453–454. PMID: 26854781, DOI: 10.1097/SCS.0000000000002463.

56. Cox J., Roche S. Vasopressors and development of pressure ulcers in adult critical care patients. Am J Crit Care. 2015; 24(6): 501–510. PMID: 26523008, DOI: 10.4037/ajcc2015123

57. Medina-Concepción A. , del Cristo Acosta-Ramos M., Pérez-García I., García-Díaz A., Plasencia-Hernández C., Díaz-Melián A., Jiménez-Sosa A. Effect of infused norepinephrine dosage on pressure ulcers in perianesthesia care unit patients: a pilot study. J Perianesth Nurs. 2011; 26(1):25–34. PMID: 21276546, DOI: 10.1016/j.jopan.2010.11.002

58. Theaker C., Mannan M., Ives N., Soni N. Risk factors for pressure sores in the critically ill. Anaesthesia. 2000; 55(3): 221–224. PMID: 10671839, DOI: 10.1046/j.1365-2044.2000.01216.x

59. Yamamura H., Kawazoe Y., Miyamoto K., Yamamoto T., Ohta Y., Morimoto T. septic shock. J Intensive Care. 2018; 6:12–18. PMID: 29497535, DOI: 10.1186/s40560-018-0280-1

60. Martin C., Medam S., Antonini F., Alingrin J., Haddam M., Meyssignac B., Vigne C., Zieleskiewicz L. , Leone M. Norepinephrine: not too much, too long. shock. 2015; 44(4): 305–309. PMID: 26125087, DOI: 10.1097/SHK.0000000000000426.

61. Jenkins C.R., Gomersall C.D., Leung P., Joynt G.M. Outcome of patients receiving high dose vasopressor therapy: a retrospective cohort study. Anaesth Intensive Care. 2009; 37(2): 286–289. PMID: 19400494, DOI: 10.1177/0310057X0903700212.

62. Wu J.Y., Stollings J.L., Wheeler A.P., Semler M.W., Rice T.W. Efficacy and Outcomes After Vasopressin Guideline Implementation in Septic Shock. Ann Pharmacother. 2017; 51(1) 13–20. PMID: 27630192, DOI: 10.1177/1060028016669163

63. Kozlov IA, Tyurin IN, Rautbart SA Early hemodynamic predictors of the lethal outcome of abdominal sepsis. Bulletin of anesthesiology and resuscitation. 2018; 15(2):6–15. DOI: 10.21292/2078-5658-2018-15-2-6-15

64. Enrico C., Kanoore Edul V.S., Vazquez A.R., Pein M.C., Pérez de la Hoz R.A., Ince C., Dubin A. Systemic and microcirculatory effects of dobutamine in patients with septic shock. J Crit Care. 2012; 27 (6): 630–638. PMID: 23084135, DOI: 10.1016/j.jcrc.2012.08.002

65. Sato R., Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015; 3:48–54. PMID: 26566443, DOI: 10.1186/s40560-015-0112-5

66. Marks J.A., Pascual J.L. Selepressin in septic shock: sharpening the VASST effects of vasopressin? Crit Care Med. 2014; 42(7): 1747–1748. PMID: 24933060, DOI: 10.1097/CCM.0000000000000420.

67. Russell J.A., Fjell C., Hsu J.L., Lee T., Boyd J., Thair S., Singer J., Patterson A.J., Walley K.R. Vasopressin compared with norepinephrine augments the decline of plasma cytokine levels in septic shock. Am J Respir Crit Care Med. 2013; 188:356–364. PMID: 23796235, DOI: 10.1164/rccm.201302-0355OC

Ischemic skin lesions as a complication of continuous vasopressin resistant infusion in catecholamine vasodilatory shock: incidence and risk factors. Crit Care Med. 2003; 31 (5): 1394–1398. PMID: 12771608, DOI: 10.1097/01.CCM.0000059722.94182.79.

69. Patel B.M., Chittock D.R., Russell J.A., Walley K.R. Beneficial affects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002; 96(3): 576–582. PMID: 11873030, DOI: 10.1097/00000542-200203000-00011

70. Xiao X., Zhang J., Wang Y., Zhou J., Zhu Y., Jiang D., Liu L., Li T. Effects of terlipressin on patients with sepsis via improving tissue blood flow. J Surg Res. 2016; 200(1): 274–282. PMID: 26253455, DOI: 10.1016/j.jss.2015.07.016

71. Bihari S., Prakash S., Bersten A. Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42(2): 671–674. PMID: 25233186

72. Hammond D.A, Ficek O.A., Painter J.T., McCain K., Cullen J., Brotherton A.L., Kakkera K., Chopra D., Meena N. Prospective, open-label trial of early, concomitant vasopressin and norepinephrine therapy versus initial norepinephrine monotherapy in septic shock. pharmaceutical therapy. 2018; 38(5): 531–538. PMID: 29600824, DOI: 10.1002/phar.2105.

73. Morelli A., Ertmer C., Rehberg S., Lange M., Orecchioni A., Cecchini V., Bachetoni A. , D’Alessandro M., Van Aken H., Pietropaoli P., Westphal M. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Critcare. 2009; 13(4): R130–143. PMID: 19664253, DOI: 10.1186/cc7990

74. Zhou F.H., Song Q. Clinical trials comparing norepinephrine with vasopressin in patients with septic shock: a meta-analysis. Mil Med Res. 2014; 1:6–12. PMID: 25722864, DOI: 10.1186/2054-9369-1-6

M. , Cook D.J., Presneill J.J., Ayers D. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008; 358 (9): 877–887. PMID: 18305265, DOI: 10.1056/NEJMoa067373.

76. O’Brien A., Clapp L., Singer M. Terlipressin for norepinephrine-resistant septic shock. Lancet. 2002; 359 (9313): 1209–1210. PMID: 11955542, DOI: 10.1016/S0140-6736(02)08225-9

77. Svoboda P., Scheer P., Kantorova I., Doubek J., Dudra J., Radvan M., Radvanova J. Terlipressin in the treatment of late phase catecholamine-resistant septic shock. Hepato-gastroenterology. 2012; 59 (116): 1043–1047. PMID: 22580654, DOI: 10.5754/hge10550

78. Asfar P., Hauser B., Ivanyi Z., Ehrmann U., Kick J., Albicini M., Vogt J., Wachter U., Bruckner U.B., Radermacher P., Bracht H. Low-dose terlipressin during long-term hyperdynamic porcine endotoxemia: effects on hepatosplanchnic perfusion, oxygen exchange, and metabolism. Crit Care Med. 2005; 33(2): 373–380. PMID: 15699842, DOI: 10.1097/01.ccm.0000152253.45901.fb

79. Morelli A., Donati A., Ertmer C., Rehberg S., Kampmeier T., Orecchioni A., Di Russo A., D’ Egidio A., Landoni G., Lombrano M.R., Botticelli L., Valentini A., Zangrillo A., Pietropaoli P., Westphal M. Effects of vasopressinergic receptor agonists on sublingual microcirculation in norepinephrine-dependent septic shock. Critcare. 2011; 15(5): R217–226. PMID: 21929764, DOI: 10.1186/cc10453

80. Choudhury A., Kedarisetty C.K., Vashishtha C., Saini D., Kumar S., Maiwall R., Sharma M.K., Bhadoria A.S., Kumar G., Joshi Y. K., Sarin S.K. A randomized trial comparing terlipressin and noradrenaline in patients with cirrhosis and septic shock. Liver Int. 2017; 37(4): 552–561. PMID: 27633962, DOI: 10.1111/liv.13252.

81. Morelli A., Ertmer C., Lange M., Dunser M., Rehberg S., Van Aken H., Pietropaoli P., Westphal M. Effects of short-term simultaneous infusion of dobutamine and terlipressin in patients with septic shock: the DOBUPRESS study. Br J Anaesth. 2008; 100(4):494–503. PMID: 18308741, DOI: 10.1093/bja/aen017

82. Zhu Y., Huang H., Xi X., Du B. Terlipressin for septic shock patients: a meta-analysis of randomized controlled study. Journal of Intensive Care. 2019; 7:16–24. DOI: 10.1186/s40560-019-0369-1

Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Critcare. 2017; 21(1): 213–222. PMID: 28807037. DOI: 10.1186/s13054-017-1798-7.

84. Gutteling J.